ECMWF COPERNICUS | REPORT

Copernicus Climate Change Service

Product User Guide for the NOAA AVHRR Polar AMV GAC Release 2

D5.4

Issued by: EUMETSAT Date: 30/11/2021 REF.: C3S_311b T5.2 M10 D5.4

This document has been produced in the context of the Copernicus Climate Change Service (C3S). The activities leading to these results have been contracted by the European Centre for Medium-Range Weather Forecasts, operator of C3S on behalf of the European Union (Delegation Agreement signed on 11/11/2014). All information in this document is provided "as is" and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability. For the avoidance of all doubts, the European Commission and the European Centre for Medium-Range Weather Forecasts has no liability in respect of this document, which is merely representing the authors view.

Product User Guide for the NOAA AVHRR Polar AMV GAC Release 2

D5.4

EUMETSAT

Roger Huckle Marie Doutriaux-Boucher Alessio Lattanzio Oliver Sus Mike Grant Jörg Schulz

Date: 30/11/2021

REF.: C3S_311b T5.2 M10 D5.4

Contents

1. Introdu	uction	.1
1.1	Purpose and scope	.1
1.2	Structure of this document	.1
1.3	Applicable documents	.2
1.4	Reference documents	.2
2. Backgr	round	.3
3. Data re	ecord definition	.5
3.1	AVHRR instrument Characteristics	.6
3.2	AMV Product Content	.7
3.3	Temporal Coverage and Completeness	.9
3.4	Spatial coverage	.9
3.5	Product format	.10
4. Produc	ct generation	.12
4.1	Basic retrieval description	.12
4.2	Main steps	.12
4.3	Input data	.13
4.4	Output data	.15
5. Summ	ary of the product validation	.18
6. Known	limitations	.19
7. Data a	ccess information	.19
7.1	Register with EUMETSAT data center	.19
7.2	Order data	.19
8. Produc	t support and feedback	.19
9. Produc	t referencing	.20

Figure 1: List of satellites flying an AVHRR instrument used as input for the polar GAC AMVs generation. This report includes data for the period 1979 – 2019. 1

Figure 2: Global view of the local equator crossing time of each NOAA and Metop satellite carrying an AVHRR instruments. Data from all satellites are used for the generation of the AMV data record, plus TIROS-N (not shown here). 6

Figure 3: Wind direction measured in degrees in clockwise direction starting from the north. For example, a direction of 225° represents a wind blowing from the southwest. The height of the wind vector is expressed in Pa. 7

Figure 4: Example of geographical coverage. Using two successive orbit paths of one Metop satellite allowing coverage of north and south poles poleward of 45°. The time difference between two images is ~101 minutes. 8

Figure 5: Example of retrieved AMVs from Metop-A for the 1st of January 2015, all AMVs from 00UTC to 14UTC. The colour indicates the height of the wind vector (in hPa) and the size of the arrow its speed (in m/s).

Figure 6: Schematic view of the EUMETSAT AVHRR AMV retrieval. The reference image is observed at time T_{ref} (or T_0), the second image (100 minutes before) is observed at time T_{search} (or T_{-1}). First a reference's target (*ref*) is selected in the image at T_0 , the height is computed using the CCC method (Borde et al., 2013). Using this location, the height and the first guess, a location is found to be the center of the search box in the previous image at T_{-1} . In this search box (10 pixels on each side of the center), the *ref* target is tracked and when found it is named backward target (*back*). The speed is derived using the distance between the *ref* and the *back* targets. The height is assumed unchanged and is provided by the height of the *ref* target. As a second step -2- The forward vector is computed by doing a forward tracking, starting from the *back* target and looking for the forward (*fwd*) target in a new search box in the image at T_0 . QI are computed comparing backward and forward tracking results. Note that for dual AMVs, Metop-A/B means *ref* is a Metop-A image.

Figure 7: Idealised view of LAC and GAC spatial sampling. GAC format is derived from the LAC format: for each line, 4 pixels are averaged and one pixel is skipped. Only one line every third lines is retained. 14

Figure 8: AVHRR level 1 data from their origin to their input in the polar AMV reprocessing algorithm. 15

Acronyms

AMV	Atmospheric Motion Vector
AVHRR	Advanced Very High Resolution Radiometer
BUFR	Binary Universal Form for the Representation of meteorological data
C3S	Copernicus Climate Change Service
CCI	Climate Change Initiative
CDR	Climate Data Record
CDS	Climate Data Store
CF	Climate and Forecast
CGS	Core Ground Segment
DOI	Digital Object Identifier
EBBT	Equivalent Black Body Temperature
ECMWF	European Center for Medium Weather Forecast
EUM	EUMETSAT
EUMETSAT	EUropean organisation for the exploitation of METeorological SATellites
ERA	European ReAnalysis
ERA-CLIM2	ERA climate – EU funded project part 2
ERA-Interim	ECMWF interim reanalysis
EPS	EUMETSAT Polar System
ESA	European Space Agency
FCDR	Fundamental Climate Data Record
GAC	Global Area Coverage
GEADR	Global External Auxiliary Data Record
GTS	Global Telecommunication System
HDF5	Hierarchical Data Format version 5
IR	InfraRed
L1B	Level 1B data
LAC	Local Area Coverage
Metop	Meteorological Operational Satellite
MDR	Measurement Data Record
MODIS	Moderate Resolution Imaging Spectroradiometer
MPHR	Main Product Header Record
NetCDF	Network Common Data Form
NOAA	National Oceanic and Atmospheric Administration
OSCAR	Observing Systems Capability Analysis and Review Tool
PDU	Product Data Unit
PFS	Product Format Specification
PyGAC	A python package to read and calibrate NOAA AVHRR GAC data
QI	Quality Indicator
RAOBCORE	RAdiosonde OBservation COrrection using REanalyses
SPHR	Secondary Product Header Record
TCDR	Thematic Climate Data Record
TIROS	Television Infrared Observation Satellite Program
WMO	World Meteorological Organization

1. Introduction

1.1 Purpose and scope

This document contains the results inherent to Work Package 5 \rightarrow Task 5.2 \rightarrow Milestone 10 in [AD1]. The purpose of this guide is to provide users with detailed information about the polar Atmospheric Motion Vectors (AMV) derived from the Advanced Very High Resolution Radiometer (AVHRR) on-board the Meteorological Operational Satellite (Metop) and the National Oceanic and Atmospheric Administration (NOAA) satellites produced within the Copernicus Climate Change Service (C3S) framework. The polar AMVs for this release include wind vectors in the period 1979 – 2019. The AMVs were derived using the algorithm developed by EUMETSAT (EUMETSAT, 2014). The datasets were evaluated and validated as shown in the quality evaluation report (EUMETSAT, 2020).

Figure 1: List of satellites flying an AVHRR instrument used as input for the polar GAC AMVs generation. This report includes data for the period 1979 – 2019.

This guide provides:

- 1. An overview of the specifications of the data record;
- 2. Scientific and technical details on the generation and definition of the data record;
- 3. Information on characteristics and limitations of the product;
- 4. Technical details on the format.

1.2 Structure of this document

- Section 1 Introduction (this section)
- Section 2 Background
- Section 3 Data record definition
- Section 3.5.3 Product generation
- Section 5 Validation summary
- Section 6 Limitations
- Section 7 Data access information
- Section 8 Product support and feedback
- Section 9 Product referencing

1.3 Applicable documents

AD1. <u>C3S 311b Implementation Plan 2021 D9.4_v1</u>.

1.4 Reference documents

Borde, R., Doutriaux-Boucher, M., Dew, G. and Carranza, M.: A Direct Link between Feature Tracking and Height Assignment of Operational EUMETSAT Atmospheric Motion Vectors, J. Atmospheric Ocean. Technol., 31(1), 33–46, doi:10.1175/JTECH-D-13-00126.1, 2013.

CF: CF Conventions Home Page, [online] Available from: https://cfconventions.org/ (Accessed 17 December 2020), 2020.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., Berg, L. van de, Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., Rosnay, P. de, Tavolato, C., Thépaut, J.-N. and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc., 137(656), 553–597, doi:10.1002/qj.828, 2011.

Devasthale, A., Raspaud, M., Schlundt, C., Hanschmann, T., Finkensieper, S., Dybbroe, A., Hörnquist, S., Håkansson, N., Stengel, M. and Karlsson, K.-G.: PyGAC: An opensource, community-driven Python interface to preprocess nearly 40-year AVHRR Global Area Coverage (GAC) data record, GSICS Q., 11(summer), 3–5, doi:10.7289/V5R78CFR, 2017.

ESA: RAFCDRv1.0, Technical Report on AVHRR GAC FCDR generation – ESA Cloud_cci, [online] Available from: http://www.esa-cloud-cci.org/?q=documentation, 2017.

EU: ERA-CLIM2 European Union's Seventh Framework Programme (FP7; Grant Agreement No. 607029 (2014)., [online] Available from: http://cordis.europa.eu/project/rcn/188832, 2014.

EUMETSAT: AVHRR Level 2 Polar Winds Product Generation Specification, [online]Availablefrom:https://www-cdn.eumetsat.int/files/2020-04/pdf_avhrr_l2_pwinds_prod_spec.pdf, 2013.

EUMETSAT: EUMETSAT AVHRR L2 wind product ATBD, 2014.

EUMETSAT: AVHRR Atmospheric Motion Vectors PPF v 3.1 Software Release Notes, 2015.

EUMETSAT: Generic Product Format Specification, [online] Available from: https://www-cdn.eumetsat.int/files/2020-04/pdf_gen_pfs.pdf, 2016.

EUMETSAT: GAC to EPS PFS L1b conversion tool requirements, 2017.

EUMETSAT: ERACLIM2-D3.10 Science Report AVHRR AMV L2 TCDR, 2018.

EUMETSAT: Quality Evaluation Report Extension GAC AVHRR AMV, 2019.

EUMETSAT: Quality Evaluation Report GAC AVHRR AMV R2 D5.4, 2020.

Hersbach, H., Bell, W., Berrisford, P., Horányi, A., J., M.-S., Nicolas, J., Radu, R., Schepers, D., Simmons, A., Soci, C. and Dee, D.: Global reanalysis: goodbye ERA-Interim, hello ERA5, , doi:10.21957/VF291HEHD7, 2019.

Holmlund, K.: The Utilization of Statistical Properties of Satellite-Derived Atmospheric Motion Vectors to Derive Quality Indicators, Weather Forecast., 13(4), 1093–1104, doi:10.1175/1520-0434(1998)013<1093:TUOSPO>2.0.CO;2, 1998.

NOAA: Climate and Forecast (CF) Metadata Conventions | Earthdata, [online] Available from: https://earthdata.nasa.gov/esdis/eso/standards-and-references/climate-and-forecast-cf-metadata-conventions/ (Accessed 17 December 2020), 2019.

WMO: Manual on the Global Telecommunication System, [online] Available from: https://www.wmo.int/pages/prog/www/ois/Operational_Information/Publications/WMO _386/WMO_386_Vol_I_2009_en.pdf, 2009.

2. Background

The Atmospheric Motion Vector (AMV) data records were generated for the Copernicus Climate Change Service¹ (C3S), which is one of the six thematic information services provided by the Copernicus Earth Observation Programme of the European Union². C3S is implemented by the European Centre for Medium-Range Weather Forecasts³ (ECMWF) on behalf of the European Commission.

The first AVHRR instrument was launched by NOAA in 1978 on-board the TIROS-N satellite. Continuing with NOAA-6 the AVHRR instrument has been on all following NOAA satellites up to NOAA-19 and on the three Metop satellites (A-C). Thus providing a 40-year record. For the NOAA satellites, a global record only exists for the Global Area Coverage (GAC) spatial resolution. For Metop the AVHRR data is available in the original Local Area Coverage (LAC) resolution, which can be converted to the GAC resolution (see section 3 for more details). At EUMETSAT a first period of NOAA and Metop AVHRR-GAC data has been processed within the ERA-CLIM2 project (EU, 2014; EUMETSAT, 2018), spanning the years from 1982 to 2015. An extension until 2018 with a one-year overlap was produced within the C3S project (EUMETSAT, 2019). The current processing now spans the entire data range from 1979 to 2019.

The AMVs are derived by tracking the cloud motion between two consecutive images. This allows retrieving AMVs down to 40° latitude away from the poles. To derive the height of the wind vectors, the EUMETSAT AMV algorithm uses the AVHRR channel 4 (11 μ m) images. To perform the height assignment, the algorithm uses the ERA-interim forecast data. For this polar AMV CDR the latest available version of the EUMETSAT algorithm (EUMETSAT, 2014, 2015) (see section 3.1.1) was used.

¹ <u>https://www.copernicus.eu/en/services/climate-change</u> Link valid 02/07/2019

² <u>https://www.copernicus.eu/en</u> Link valid 02/07/2019

³ <u>https://www.ecmwf.int/</u> Link valid 02/07/2019

This guide provides information applicable to Polar AVHRR-GAC AMV products for the period from 1979 to 2019. AMV data are derived using AVHRR instruments on TIROS-N, NOAA-06 to19 and Metop-A and B.

3. Data record definition

Table 1: CDR fact sheet

	Data record name	AVHRR-GAC AMV polar release 2	
eral	Data record digital identifier	http://doi.org/10.15770/EUM_SEC_CLM_0056	
Ger	Data record short description	Reprocessed level-2 AMVs using images from AVHRR-1/2/3 instrument in GAC resolution from TIROS-N, NOAA and Metop satellites.	
	Record type	Thematic Climate Data Record (TCDR)	
Instrument	Period covered	TIROS-N: 01 January 1979 – 20 January 1980 NOAA-06: 21 January 1980 – 01 September 1981 NOAA-07: 24 August 1981 – 31 January 1985 NOAA-08: 06 June 1983 – 13 October 1985 NOAA-09: 27 March 1985 – 06 November 1988 NOAA-10: 17 November 1986 – 15 September 1991 NOAA-10: 17 November 1988 – 13 September 1994 NOAA-11: 08 November 1988 – 13 September 1994 NOAA-12: 16 September 1991 – 13 December 1998 NOAA-14: 20 January 1995 – 07 September 2002 NOAA-15: 26 October 1998 – 01 September 2019 NOAA-16: 01 January 2001 – 30 December 2011 NOAA-17: 10 July 2002 – 13 October 2010 NOAA-18: 05 June 2005 – 01 September 2019 NOAA-19: 07 February 2009 – 01 September 2019 Metop-A: 29 June 2007 – 01 September 2019 Metop-B: 01 January 2013 – 01 September 2019	
	Content	Polar AMVs level-2 products – single mode	
	Generation frequency	Images from 2 orbits are needed, i.e. every 100 minutes.	
	Algorithm version	3.1.1	
	Instrument name	Advanced Very High Resolution Radiometer (AVHRR)	
	Instrument description	The Advanced Very High Resolution Radiometer (AVHRR) is an imaging radiometer in the visible and infrared (IR) portions of the electromagnetic spectrum with channels in the range between 0.58 - 12.5 microns. In total three versions have been in operations. AVHRR/1 has four channels (TIROS-N, NOAA-06, 08 and 10), AVHRR/2 has five channels (NOAA-07, 09, 11 to 14) and AVHRR/3 (from NOAA-15 and Metop) six channels. Channel 4 is the same for all three instrument versions.	
	Input data	 AVHRR channel 4 (11µm) ECMWF ERA-interim 6-hourly forecast data 	
Data	Output data	AMV (a wind vectors characterised by a speed, a direction, a height and associated quality indicators (QI)) retrieved using the EUMETSAT operational algorithm (v3.1.1)	
	Format	The products are provided in EPS-native, BUFR and netCDF format.	

ess	Copernicus Climate Change Service (C3S)	C3S website: https://climate.copernicus.eu.
Acc	EUMETSAT Data Centre	The data set is available from EUMETSAT Data Centre (https://eoportal.eumetsat.int/)
	Delivery (EUM)	• ftp pull
erage	Spatial	polar region polar wards of 40°
Cove	Temporal	~100 minutes

3.1 AVHRR instrument Characteristics

This section gives an overview of the characteristics of the instruments used to generate the polar winds data record back to 1979 from AVHRR Global Area Coverage (GAC) onboard the TIROS-N, NOAA and Metop satellite series.

Figure 2: Global view of the local equator crossing time of each NOAA and Metop satellite carrying an AVHRR instruments. Data from all satellites are used for the generation of the AMV data record, plus TIROS-N (not shown here).

NOAA and EUMETSAT operate a series of polar orbiting satellites that carry the AVHRR instrument. The NOAA and EUMETSAT satellites circle the Earth 14 times per day at an altitude of about 833 km. As shown in Figure 2, the equator crossing time changes over time for the NOAA satellites, but not for Metops where the orbit is kept stable. The AVHRR instrument takes 2048 Earth views per scan and per channel, having a swath width of 2893 km and a pixel resolution of about 1.1 km at nadir. The AVHRR passive imager was first a 4-channel radiometer and subsequently improved to 5 and 6 channels at wavelengths between 0.5 and 12.0 μ m.

Table 2 summarises the spatial resolution at nadir, the spectral bands and the calibration accuracy for the visible, near-infrared and infrared channels of the AVHRR. The AMVs are derived using only the AVHRR thermal infrared window channel #4.

	AVHRR	AVHRR/2	AVHRR/3
Period	Aug. 1979 - 2001	1981 - 2007	1998 → 2025
Satellites	TIROS-N, NOAA-6, - 8 and -10	NOAA-7, -9, -11, -12, -13, , and -14	NOAA-15, -16, -17, -18, and -19, Metop-A, -B, -C
Number of channels	4	5	6
Channels central wavelength (µm) and spectral interval (µm)	1- 0.615 (0.55-0.68) 2- 0.912 (0.725-1.1) 3- 3.74 (3.55-3.93) 4- 11.0 (10.5-11.5)	1- 0.615 (0.55-0.68) 2- 0.912 (0.725-1.1) 3- 3.74 (3.55-3.93) 4- 10.80 (10.3-11.3) 5- 12.00 (11.5-12.5)	1- 0.630 (0.58-0.68) 2- 0.862 (0.725-1.00) 3A- 1.61 (1.58-1.64) 3B- 3.74 (3.55-3.93) 4- 10.80 (10.3-11.3) 5- 12.00 (11.5-12.5)
Swath (in pixels)	cross track: 2048 along track: 6	cross track: 2048 along track: 6	cross track: 2048 along track: 6
Resolution at nadir (km)	1.1	1.1	1.1

Table 2: Details about the three versions of the AVHRR instrument. Information from OSCAR WMO websites.

3.2 AMV Product Content

The Atmospheric Motion Vector (AMV) product provides information on wind speed (m/s), direction (°), and pressure (Pa) of vectors (as shown in Figure 3) which are derived by tracking clouds between two adjacent images in time. For the wind vectors, the meteorological convention is used:

- 0° : Winds blowing from North
- 90° : Winds blowing from East
- 180°: Winds blowing from South
- 270°: Winds blowing from West

Figure 3: Wind direction measured in degrees in clockwise direction starting from the north. For example, a direction of 225° represents a wind blowing from the southwest. The height of the wind vector is expressed in Pa.

AMVs are retrieved by tracking the motion of clouds or patterns of other atmospheric constituents such as water vapour. Very generally, as a first step a feature is identified in the first image, the second step is to identify this feature again in the second image. If this is successful then wind speed and direction are calculated based on the geographical displacement of the feature and time between images. A height is assigned

to each wind vector based on the measured brightness temperature. Finally, a quality index is calculated for each AMV.

Figure 4: Example of geographical coverage. Using two successive orbit paths of one Metop satellite allowing coverage of north and south poles poleward of 45°. The time difference between two images is ~101 minutes.

Each AMV data sample contains a wind speed (in ms⁻¹), a wind direction (in °), and a wind height information together with geolocation data (latitude and longitude). The height is given as a pressure in Pascal (Pa); the corresponding brightness temperature (in K) is also recorded in the product. The final wind vector height is obtained using the IR EBBT method with the help of the forecast model data (AMV_HA_METHOD=1). It is accompanied by a quality index and other metadata. The quality index amongst others takes into account the temporal and the spatial consistency with the surrounding wind vectors and consistency with the forecast model wind field at the same time and location (Holmlund, 1998).

Tropospheric AMVs are retrieved at all levels below the tropopause, derived from the AVHRR infrared (IR) channel 4 at $11\mu m$ (see Table 2).

Figure 5 shows an example of the resulting AMV product. The wind vectors are represented as wind barbs. The colour of each barb gives the retrieved wind vector height. The generated AMVs are grouped into three height classes according to their height as defined in Table 3.

CLASS	Description
ALL	All vectors are considered for calculating the statistics
HIGH	Only vectors with a CTP < 400 hPa are considered for calculating the statistics
MID	Only vectors with 400 \leq CTP \leq 700
LOW	Only vectors with a CTP > 700 hPa are considered for calculating the statistics

Table 3: AMV height classes.

Figure 5: Example of retrieved AMVs from Metop-A for the 1^{st} of January 2015, all AMVs from 00UTC to 14UTC. The colour indicates the height of the wind vector (in hPa) and the size of the arrow its speed (in m/s).

3.3 Temporal Coverage and Completeness

The overall data record temporal coverage is 1979 – 2019, according to the different satellites and products as described in Table 4.

Satellite	Instrument	Serial number	Coverage	Reprocessing period
TIROS-N	AVHRR/1	PFM 104	Polar	01/01/1979 - 20/01/1980
NOAA-06	AVHRR/1	FM 103	Polar	21/01/1980 - 01/09/1981
NOAA-07	AVHRR/2	FM 201	Polar	24/08/1981 - 31/01/1985
NOAA-08	AVHRR/1	FM 102	Polar	06/06/1983 - 13/10/1985
NOAA-09	AVHRR/2	FM 202	Polar	27/03/1985 - 06/11/1988
NOAA-10	AVHRR/1	FM 101	Polar	17/11/1986 - 15/09/1991
NOAA-11	AVHRR/2	FM 203	Polar	08/11/1988 - 13/09/1994
NOAA-12	AVHRR/2	FM 205	Polar	16/09/1991 - 13/12/1998
NOAA-14	AVHRR/2	FM 204	Polar	20/01/1995 - 07/09/2002
NOAA-15	AVHRR/3	FM 302	Polar	26/10/1998 - 01/09/2019
NOAA-16	AVHRR/3	FM 303	Polar	01/01/2001 - 30/12/2011
NOAA-17	AVHRR/3	FM 304	Polar	10/07/2002 - 13/10/2010
NOAA-18	AVHRR/3	FM 306	Polar	05/06/2005 - 01/09/2019
NOAA-19	AVHRR/3	FM 308	Polar	07/02/2009 - 01/09/2019
Metop-A	AVHRR/3	FM 305	Polar	29/06/2007 - 01/09/2019
Metop-B	AVHRR/3	FM 307	Polar	01/01/2013 - 01/09/2019

Table 4: Satellite, instrument, spatial and temporal coverage.

3.4 Spatial coverage

The AMVs are derived over the poles for the single instrument products, with a geographical coverage poleward of 40°N and 40°S respectively (see Figure 5).

3.5 Product format

The data records are available in three formats: the EUMETSAT native EPS format (EUMETSAT, 2013), the BUFR format and the netCDF format.

3.5.1 EUMETSAT native format

The Generic Product Format Specification for the products produced by the Product Generation functions in the EUMETSAT Polar System (EPS) Core Ground Segment (CGS) is described in detail in (EUMETSAT, 2016). The parts of the generic products format more specific to the wind products are described in (EUMETSAT, 2013).

Reprocessed files can be identified by their filenames for which the processing mode is set to \mathbf{R} . A reprocessed AVHRR AMV file uses the naming convention described in the Table 5.

Table 5: File names for the reprocessed AVHRR AMV following the EPS naming convention. [mode] is 02. [sat_id] can be TSN for TIRIS-N, Nxx with xx standing for the NOAA satellite number or M01 for Metop-B or M02 for Metop-A. [vvvv] refers to the CDR reprecessed version. For this second release it is 0200.

Filename
AVHR_GAC_[mode]_[sat_id]_[start sensing time]_[stop sensing time]_R_O_[processing time]_[vvvv]

For each file, the native EPS EUMETSAT format is made of:

- a Main Product Header Record, **MPHR**, common to all EPS products,
- a Secondary Product Header Record, **SPHR**, informing about quality flag and general product specific information,
- a Global External Auxiliary Data Record, **GEADR**, providing information about processor configuration data
- several Measurement Data Records, **MDR**, detailing each individual AMV

The Appendix A provides an example of the product output for one file and one MDR. The most important fields of the **MDR** are shown in Table 6.

Table 6: Supplementary information to be used with (EUMETSAT, 2013) regarding the AMV product. Note that reprocessed AMV do not include IASI method.

Name	Description	Format	Possible value
AMV_PRESSURE	Final height	Unsigned integer	
AMV_HA_METHOD	Method used	Byte	1= EBBT
HA_PRESSURE HA_PRESSURE_SD HA_TEMPERATURE HA_TEMPERATURE_HD	Values for individual pressure	Unsigned integer [4,3]	 X X X ref image X X X previous image X X X X previous image X X X X X EBBT method X IASI method
INTER_DIRECTION INTER_SPEED	Intermediate components	Unsigned integer [2,1]	First value is from the ref image to the previous one Second value is from the previous image to the reference one

3.5.2 BUFR

The second format the date record is available in is the Binary Universal Form for the Representation of meteorological data (BUFR). BUFR is a binary data format maintained by the World Meteorological Organization (WMO). Details on the AMV BUFR format are given in Appendix C. The details concerning the format of the products generated at EUMETSAT are available under:

http://www.eumetsat.int/website/home/Data/Products/Formats/index.html⁵.

The BUFR product's filename provides a unique identifier for each product. The filename follows the WMO Global Telecommunication System (GTS) convention (WMO, 2009). AMV BUFR filenames are described in Table 7.

Table 7: File names description for the reprocessed AVHRR AMV following the BUFR naming convention.

Filename				
Single AVHRR AMV				
W_XX-EUMETSAT-Darmstadt,	SOUNDING+SATELLITE, NOAA15+AVHRR_C_EUMP_20150325235503_87515_eps_r_gac_l2_0101.bin			
SATID I2 r yyymmddhhmmss nnnnn vvvv	satellite id – used for the ref image (first one) Level 2 reprocessed mode start time of the ref PDU image used to derive the AMV product last orbit number reprocessed release version (0101 = release 1.01)			

3.5.3 NetCDF

The third format the AMV data record available, is the Network Common Data Form (NetCDF) format, as a simple conversion from the original native format. The file naming of AMV data in NetCDF4 format follows the standard WMO naming convention applied at EUMETSAT.

Table 8: Description of the NetCDF filename for the CDR.

Filename convention for reprocessed NetCDF filename			
W_XX-EUMETSAT-Darmstadt,			
<channel>+ATMOSPHERE+PRODUCT,<satid>+<insi< th=""><th colspan="3"><pre></pre></th></insi<></satid></channel>	<pre></pre>		
PRODUCT>_12_ <release>.nc</release>			
Example of a filename			
W XX-EUMETSAT-Darmstadt,			
IR+ATMOSPHERE+AMV,METOPA+AVHRR_C EUMP 200712011900002 200712012000002 polar r gac 12 0200.nc			
Description			
CHANNEL> Instrument Channel used → for AVHRR: IR			
Satellite name/id			
<instrument> AVHRR</instrument>			
CORIGINATOR> EUMP			
<pre><startdate> Start sensing time (YYYYMDDhhmmssZ)</startdate></pre>			
ENDDATE> End sensing time (YYYYMMDDhhmmssZ)			
(FAMILY> Satellite family, e.g. leo or geo.			
PRODUCT> Product type			

⁴ Link validity tested on 04/07/2019.

⁵ Link validity tested on 04/07/2019.

<release>

Version

The PMAp NetCDF variable and meta data naming is following the Climate and Forecast (CF) governance standard applied by EUMETSAT to support product development in the frame of the GSICS Data Management Working Group.

Please refer to Appendix D for a detailed description of the NetCDF files content.

4. Product generation

4.1 Basic retrieval description

Wind vectors are retrieved by tracking the motion of clouds or patterns of other atmospheric constituents such as water vapour. Very generally, as a first step a feature is identified in the first image, the second step is to identify this feature again in the second image. If this is successful then wind speed and direction are calculated based on the geographical displacement and time between images. A height is assigned to each vector based in the case of AVHRR on the brightness temperature. Finally, a quality index is calculated for each AMV.

4.2 Main steps

The operational EUMETSAT AVHRR AMV algorithm is described in detail in (EUMETSAT, 2014) and depicted in Figure 6. In real time at EUMETSAT, AVHRR data are received every three minutes. Each small file received is called Product Data Unit (PDU). The EUMETSAT algorithm has been developed with this concept of PDUs as a base-line input. Therefore, the algorithm used in the reprocessing also uses 3-minute PDUs from AVHRR as input. For each PDU, three PDUs with an overlap from the previous orbit are used to do the feature identification and to allow the full coverage of the reference PDU. Only data from two consecutive orbits are used, which results in AMV retrieved only pole wards of \pm 40°. Six hourly ERA-interim forecast data are used as a "first guess" for wind vector speed and direction. Because the time between two images is rather long (100 minutes), the usage of the first guess is needed in order to save computation power and increase the quality of the retrieved winds. ERA-interim temperature profiles are used for the height assignment. The EUMETSAT algorithm is summarised by Figure 6. It uses two AVHRR consecutive orbits, allowing winds to be retrieved up to 40°.

Figure 6: Schematic view of the EUMETSAT AVHRR AMV retrieval. The reference image is observed at time T_{ref} (or T_0), the second image (100 minutes before) is observed at time T_{search} (or T_{-1}). First a reference's target (*ref*) is selected in the image at T_0 , the height is computed using the CCC method (Borde et al., 2013). Using this location, the height and the first guess, a location is found to be the center of the search box in the previous image at T_{-1} . In this search box (10 pixels on each side of the center), the *ref* target is tracked and when found it is named backward target (*back*). The speed is derived using the distance between the *ref* and the *back* targets. The height is assumed unchanged and is provided by the height of the *ref* target. As a second step -2- The forward vector is computed by doing a forward tracking, starting from the *back* target and looking for the forward (*fwd*) target in a new search box in the image at T_0 . QI are computed comparing backward and forward tracking results. Note that for dual AMVs, Metop-A/B means *ref* is a Metop-A image.

4.3 Input data

This section presents an overview of the input data used for the data record generation: NOAA and Metop AVHRR imagery and ECMWF ERA-interim model forecast data.

4.3.1 AVHRR L1B GAC data

AMV products are derived using AVHRR infrared images (Holmlund, 1998). The main part of the data used is the channel 4 (11μ m) brightness temperature, including geolocation. The EUMETSAT algorithm also uses information such as the scan angle and cloud cover. Table 4 lists the flight model and satellite platform used.

The AVHRR data are available in two spatial resolutions. Firstly, the Local Area Coverage (LAC) format, which provides observations at original pixel resolution with $1.1 \times 1.1 \text{ km}^2$ at the sub-satellite point. Secondly, the GAC format, in which four out of every five

samples along the scan line are used to compute one average value. The data from only every third scan line are processed, resulting in a spatial resolution of GAC data near sub-satellite point of 1.1x4.4 km² with a 2.2 km gap (or 2 pixels) between two scan lines.

For AVHRR instruments on NOAA satellites, data are available globally only in the GAC format. Metop data are available in LAC format and have been reformatted to the GAC format for this CDR. The LAC to GAC resampling principles are illustrated in the Figure 7.

Figure 7: Idealised view of LAC and GAC spatial sampling. GAC format is derived from the LAC format: for each line, 4 pixels are averaged and one pixel is skipped. Only one line every third lines is retained.

The AVHRR level 1B data was generated using the PyGAC software package⁶ that contains essential corrections to be applied to the sensor data including best-known calibration. The PyGAC data (ESA, 2017) contains level 1B calibrated reflectance, radiance as well as sun and satellite zenith and azimuth angles and scanline quality information (Devasthale et al., 2017; ESA, 2017). Those data have been converted from the original level 1B GAC data into HDF5 format that contains meta data using the international Climate and Forecast (CF (CF, 2020; NOAA, 2019)) meta data standard. A database containing additional metadata information is also necessary.

The EUMETSAT AMV retrieval algorithm needed to be adapted for the use of PyGAC AVHRR level 1B data in GAC resolution. A converter is used (EUMETSAT, 2017), that transforms the PyGAC dataset and metadata from the HDF5 files into the format required by the EUMETSAT algorithm as described in the Polar System (EPS) Product Format Specification (PFS) (EUMETSAT, 2016). A description of the level 1B data processing chain is presented in Figure 8. The orbit data are also sliced into 3 minute long Processing Data Units (PDU) to be used by the EUMETSAT polar AMV software. One GAC PDU contains 360 AVHRR scan lines and needs to be complete and error free, otherwise the AMV processor does not work. This constraint may have some consequences for older data resulting in data gaps.

⁶ <u>https://pygac.readthedocs.io/en/develop</u>

Figure 8: AVHRR level 1 data from their origin to their input in the polar AMV reprocessing algorithm.

4.3.2 Reanalysis data

For the first guess, to compute the height (pressure) of each wind vector and its quality indicator, forecast model outputs from ECMWF ERA-Interim reanalysis (Dee et al., 2011) are used as input for the reprocessing. We use the 6 and 12 hour forecast from the 0 and 12 UTC base times, leading to 4 forecast files per day (0, 6, 12 and 18 UTC). The forecast grid is 0.5°x0.5° with 60 vertical levels. The parameters used for the processing are listed in Table 9. More details on the ERA-Interim re-analysis data can be found on the ECMWF web site⁷. ERA-Interim forecast data is only available until end of August 2019, hence the processing for this CDR ceased at this date. Future processings will need to use other NWP data to go further in time, e.g. the ERA5 release (Hersbach et al., 2019, p.5).

Table 9: ERA-Interim data fields used for AMV processing.

Model Layers (1 - 60)	Surface
Temperature	Geopotential
Wind u-component	Surface pressure
Wind v-component	2m temperature
Specific humidity	2m dew point temperature
	Surface skin temperature

4.4 Output data

The system outputs the Atmospheric Motion Vectors (AMV) in the EPS-native format (EUMETSAT, 2013). A BUFR encoder is applied to generate BUFR formatted files (see section 3.5) from the EPS-native format as well as files in netCDF format. The AVHRR AMVs are generated every 3 minutes. The CDR is provided in files containing AMV aggregation of one day per file. Table 10 to Table 14 summarise the annual sizes of AMV files generated for the whole time series.

⁷ Link valid 04/07/2019 <u>https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim</u>

Table 10: Data sizes in GB per year and satellite, in the 1970s.

Format		Year					
		1978	1979				
TIROS-N							
Native	Size	0.5	21				
BURF	Size	0.01	3.3				
NetCDF	Size		1.8				

 Table 11: Data sizes in GB per year and satellite, in the 1980s.

Format			Year										
		1980	1981	1982	1983	1984	1985	1986	1987	1988	1989		
					TIR	OS-N							
Native	Size	1.1											
BUFR	Size	0.1											
NetCDF	Size	0.01											
NOAA-06													
Native	Size	19	14										
BUFR	Size	2.9	2.1										
NetCDF	Size	1.6	1.2										
	-		-		NOA	A-07							
Native	Size		7.8	21	21	20	2.0						
BUFR	Size		1.3	3.3	3.3	3.2	0.3						
NetCDF	Size		0.7	1.8	1.8	1.7	0.2						
					NOA	A-08		•	•	•			
Native	Size				5.4	7.7	3.1						
BUFR	Size				0.8	1.3	0.5						
NetCDF	Size				0.5	0.7	0.2						
		1	-	-	NOA	A-09							
Native	Size						14	18	23	15			
BUFR	Size						2.1	2.9	3.6	2.4			
NetCDF	Size						1.2	1.6	1.9	1.3			
					NOA	A-10				•			
Native	Size							3.3	27	26	24		
BUFR	Size							0.5	4.4	4.2	3.8		
NetCDF	Size							0.3	2.3	2.3	2.1		
					NOA	A-11							
Native	Size									3.1	23		
BUFR	Size									0.5	3.5		
NetCDF	Size									0.3	1.9		

Table 12: Data sizes in GB per year and satellite, in the 1990s.

Format		Year										
		1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	
						NOAA-1	L O					
Native	Size	26	18									
BUFR	Size	4.1	2.9									
NetCDF	Size	2.2	1.5									
NOAA-11												
Native	Size	21	21	21	22	16						
BUFR	Size	3.2	3.1	3.1	3.3	2.4						
NetCDF	Size	1.8	1.7	1.7	1.8	1.3						
						NOAA-1	L 2					
Native	Size		7.1	24	24	25	27	27	28	27		
BURF	Size		1.2	3.8	3.9	4.0	4.3	4.3	4.4	4.3		
NetCDF	Size		0.6	2.0	2.1	2.1	2.3	2.3	2.4	2.3		
						NOAA-1	.4					
Native	Size						25	26	27	27	27	
BUFR	Size						3.9	4.1	4.2	4.3	4.2	
NetCDF	Size						2.1	2.2	2.3	2.3	2.3	
						NOAA-1	15					
Native	Size									5.2	28	
BUFR	Size									0.9	4.5	
NetCDF	Size									0.5	2.4	

Format			Year									
		2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	
						NOAA-1	.4					
Native	Size	28	23	16								
BUFR	Size	4.3	3.4	2.2								
NetCDF	Size	2.4	1.9	1.3								
	-		-			NOAA-1	.5				-	
Native	Size	17	22	25	29	29	29	29	28	29	29	
BUFR	Size	2.6	3.5	4.0	4.6	4.6	4.6	4.6	4.6	4.6	4.6	
NetCDF	Size	1.4	1.9	2.2	2.5	2.5	2.6	2.5	2.5	2.5	2.5	
	-		-			NOAA-1	.6				-	
Native	Size		29	29	29	24	24	29	29	29	29	
BUFR	Size		4.6	4.5	4.6	3.8	3.7	4.6	4.5	4.7	4.6	
NetCDF	Size		2.6	2.5	2.6	2.1	2.1	2.6	2.5	2.6	2.6	
	-		-			NOAA-1	.7				-	
Native	Size			14	29	29	29	29	29	29	29	
BUFR	Size			2.3	4.6	4.6	4.6	4.6	4.5	4.6	4.6	
NetCDF	Size			1.3	2.6	2.5	2.6	2.6	2.5	2.6	2.5	
						NOAA-1	8			•		
Native	Size						17	29	29	29	30	
BUFR	Size						2.7	4.6	4.6	4.6	4.7	
NetCDF	Size						1.6	2.6	2.6	2.6	2.7	
	-		-			NOAA-1	.9				-	
Native	Size										26	
BUFR	Size										4.0	
NetCDF	Size										2.3	
			-			Metop-	Α					
Native	Size								13	27	30	
BUFR	Size								2.1	4.5	4.9	
NetCDF	Size								1.1	2.4	2.7	

Table 13: Data sizes in GB per year and satellite, in the 2000s.

Table 14: Data sizes in GB per year and satellite, in the 2010s.

Format			Year									
		2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	
						NOAA-1	.5					
Native	Size	29	29	28	29	29	28	29	29	27	19	
BUFR	Size	4.6	4.6	4.4	4.6	4.6	4.5	4.6	4.6	4.4	2.9	
NetCDF	Size	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.4	1.6	
NOAA-16												
Native	Size	29	29									
BUFR	Size	4.7	4.6									
NetCDF	Size	2.6	2.6									
	-					NOAA-1	.7					
Native	Size	11	1.8									
BUFR	Size	1.4	0.0									
NetCDF	Size	0.8										
						NOAA-1	.8					
Native	Size	29	29	29	29	29	29	29	29	30	22	
BUFR	Size	4.6	4.6	4.6	4.6	4.6	4.6	4.7	4.7	4.7	3.2	
NetCDF	Size	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.7	2.7	1.8	
						NOAA-1	.9					
Native	Size	30	30	30	30	30	30	30	30	30	22	
BUFR	Size	4.8	4.7	4.8	4.7	4.8	4.7	4.8	4.8	4.8	3.2	
NetCDF	Size	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	2.7	1.8	
						Metop-	Α					
Native	Size	30	29	29	29	29	29	29	29	29	21	
BUFR	Size	4.9	4.8	4.8	4.8	4.9	4.8	4.8	4.9	4.8	3.2	
NetCDF	Size	2.7	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	1.7	
	-					Metop-	В					
Native	Size				26	29	29	30	30	29	22	
BUFR	Size				4.1	4.6	4.8	4.8	4.8	4.7	3.3	
NetCDF	Size				2.3	2.5	2.6	2.7	2.7	2.6	1.8	

5. Summary of the product validation

AVHRR AMVs from TIROS-N, NOAA-06 to 19 and Metop-A and -B have been produced for the period 1979-2019 over the Polar Regions, poleward of 40° latitude, as release 2 of the polar AVHRR GAC CDR (D5.4). AMVs are retrieved using the same EUMETSAT processing chain and algorithm for GAC AVHRR channel 4 input data on-board each satellite. The validation strategy followed the CGMS guidelines for quality evaluation of Atmospheric Motion Vectors (WMO et al., 2011). The AMVs have been compared with independent AMV dataset: ground based reference radiosonde data (RAOBCORE), reanalysis data (ERA-interim), and AMVs derived from MODIS data.

The temporal analysis shows that we have an increase of retrieved AMVs over time, from around 15000 to about 20000 AMVs per day and polar region. This increase is connected to instrument changes and most likely reflects the input data availability and quality. The daily averaged speeds show a significant seasonal cycle but are very stable over time. This first broad analysis indicates that the release 2 of the AVHRR GAC CDR is of a good quality.

Comparison against ERA-Interim forecast data shows that we have mainly positive speed bias of the AMVs. This bias changes over time, depending on the satellite. In later years, the bias becomes smaller and is on average near zero especially for the high level winds. The RSME is constantly between 2 and 3 m/s. When looking at regional distribution of bias and RSME we see a homogeneous distribution with no apparent problematic areas.

The comparison with collocated radio sondes shows a stable comparison over the entire data set. The differences in the high level is higher than for the mid and low level. Expect for a small positive bias in the low level the average speed difference against radio sondes is near zero.

AMVs from NOAA were compared with a completely independent satellite dataset, the CIMSS MODIS AMVs. Numbers in the north are quite similar and differ mainly for the high level winds in the summer months. Over Antarctica we have a significant difference for the number of mid level AMVs, with higher numbers in this CDR. The Average speed in the north shows a fast bias for MODIS at mid and low levels, in the south also the high levels are faster in the MODIS data. Regional distribution and seasonal changes in the wind speed are quite similar in both data records.

A new aspect of this validation was the possibility to compare this release with the previous release of AVHRR GAC AMVs (EUMETSAT, 2019). The promising result from this comparison is that the apparent deficits found in the release 1 for NOAA-15 and the two Metop satellites have been fixed. This of course results in significant differences, mainly in additional AMVs in release 2.

The reprocessed polar AMVs exhibit geographical and seasonal features, in line with wellknown atmospheric circulation patterns. The AMVs present a clear seasonal cycle linked with the cloudiness being more pronounced for mid- and high-level clouds. The increase of clouds during the summer months over the Polar Regions can be clearly seen in the number of retrieved AMVs. The wind speed increases with the altitude in all regions.

In conclusion, the comparisons against independent data sources such as in-situ measurements and satellite retrievals demonstrated the suitability of the AVHRR-GAC AMV CDR for data assimilation and climate studies.

6. Known limitations

There is no real limitation for this dataset. Nevertheless, some AMVs can be missing or of degraded quality mainly due to AVHRR input data.

- For the early NOAA satellites up to about NOAA-10 we sometimes see unrealistic high AMV speeds (exceeding 300 m/s). Care needs to be taken when high AMV speeds and slow forecast speeds come together.
- In very limited number of cases, the first forecast speed saved in the AMV product is invalid. The cause is currently unknown. The retrieved AMVs still have a good QI, nevertheless it is recommended not to use these data (180 AMVs only in total).

7. Data access information

The data products are part of the Copernicus Climate Data Store (CDS) and should be available from the Copernicus Climate Change Service (C3S) website: <u>https://climate.copernicus.eu</u>.

The data are also accessible via the EUMETSAT Data Centre. To access the data from EUMETSAT, you need to register with the EUMETSAT Data Centre. When registered, you can order the data through a written request send to EUMETSAT's helpdesk.

7.1 Register with EUMETSAT data center

To register with the EUMETSAT Data Centre:

- Register in the EUMETSAT EO-Portal (https://eoportal.eumetsat.int/) by clicking on the New User Create New Account tab.
- After finalisation of the registration process, an e-mail is sent to the e-mail address entered in the registration.
- Click the confirmation link in the e-mail to activate your account;
- Login and subscribe to the Data Centre Service by going to the Service Subscription Tab and selecting Data Centre Service.
- Follow instructions issued from the web page to add needed information.

7.2 Order data

The data record described in this product user guide can be ordered via the EUMETSAT User Service Helpdesk in Darmstadt, Germany. Please send a written request to this helpdesk, email *ops@eumetsat.int,* indicating the data record you want to order including its Digital Object Identifier (DOI) number.

If you have more questions or support issues, please contact the User Service Helpdesk directly via e-mail: *ops@eumetsat.int*.

8. Product support and feedback

For enquiries or feedback concerning the product described in this product user guide, the CDS offers Help & Support functionality. Alternatively, the user can contact the EUMETSAT User Service Helpdesk by email: *ops@eumetsat.int.*

9. Product referencing

The data record described in this product user guide has a unique DOI that should be used for referencing. The product's filename provides a unique identifier for each product. Please note that the DOI is not included in the native-eps nor in the BUFR files.

Appendix A EPS Format Product Record Example

Table 15 shows an example of a dump of a native-eps AMV file named *AVHR_GAC_02_N19_20170612231003Z_20170612231303Z_R_0_20190712011436Z_0101*. The two interesting quality indicators are highlighted, for the first mdr, there are 53 QI including, and 98 QI excluding forecast. More details are found in (EUMETSAT, 2013).

For each mdr, *record_stop_time* refers to the time of the center of the search target (previous image in time) and the *record_start_time* refers to the time of the reference target.

```
Table 15: Extract of a native-eps
file:AVHR_GAC_02_N19_20170612231003Z_20170612231303Z_R_0_20190712011436Z_0101
MPHR:
   RECORD HEADER
       RECORD CLASS: 1 (MPHR)
       INSTRUMENT GROUP: 0 (Generic)
       RECORD SUBCLASS: 0
       RECORD SUBCLASS VERSION: 2
       RECORD_SIZE: 3307
       RECORD_START_TIME: 2017/06/12 23:10:03.000
       RECORD STOP TIME: 2017/06/12 23:13:03.000
   PRODUCT_NAME: AVHR_AMV_02_N19_20170612231003Z_20170612231303Z_R_0_20190712011436Z
   PARENT_PRODUCT_NAME_1: AVHR_GAC_1B_N19_20170612231003Z_20170612231303Z_R_0_20190709093947Z
   INSTRUMENT_ID: AVHR (AVHRR/3)
   INSTRUMENT MODEL: 4 ()
   PRODUCT TYPE: AMV ()
   PROCESSING_LEVEL: 02 (Level 2)
   SPACECRAFT_ID: N19 ()
   SENSING_START: 2017/06/12 23:10:03.000
                                                    start time of the PDU
   SENSING END: 2017/06/12 23:13:03.000
                                                    end time of the PDU
   SENSING START THEORETICAL: 2017/06/12 23:10:03.000
   SENSING_END_THEORETICAL: 2017/06/12 23:13:03.000
   PROCESSING_CENTRE: TCE1 ()
   PROCESSOR MAJOR VERSION: 3
   PROCESSOR MINOR VERSION: 1
   FORMAT_MAJOR_VERSION: 11
   FORMAT_MINOR_VERSION: 0
   PROCESSING_TIME_START: 2019/07/12 01:14:28.000
   PROCESSING TIME END: 2019/07/12 01:14:36.000
   PROCESSING MODE: R (Reprocessing)
   DISPOSITION MODE: O (Operational)
   RECEIVING_GROUND_STATION: RUS ()
   RECEIVE TIME START: 2000/01/01 00:00:00.000
   RECEIVE TIME END: 2000/01/01 00:00:00.000
   ORBIT START: 43006
   ORB.
   ACTUAL PRODUCT SIZE: 126970 bytes
   STATE VECTOR TIME: 20170612224340396Z UTC
   SEMI MAJOR AXIS: 0 mm
   ECCENTRICITY: 0
   INCLINATION: 0 deg
   PERIGEE ARGUMENT: 0 deg
   RIGHT ASCENSION: 0 deg
   MEAN ANOMALY: 0 deg
   X_POSITION: 0 m
   Y POSITION: 0 m
   Z POSITION: 0 m
   X VELOCITY: 0 m/s
   Y VELOCITY: 0 m/s
   Z VELOCITY: 0 m/s
   EARTH_SUN_DISTANCE_RATIO: 1.031115
LOCATION_TOLERANCE_RADIAL: 0 m
   LOCATION_TOLERANCE_CROSSTRACK: 0 m
LOCATION_TOLERANCE_ALONGTRACK: 0 m
```


YAW ERROR: 0 deg ROLL ERROR: 0 deg PITCH_ERROR: 0 deg SUBSAT LATITUDE START: 80.457 Deg SUBSAT LONGITUDE START: 132.856 Deg SUBSAT_LATITUDE_END: 73.744 Deg SUBSAT_LONGITUDE_END: 94.063 Deg LEAP_SECOND: 0 LEAP SECOND UTC: 2000/01/01 00:00:00.000 TOTAL RECORDS: 513 TOTAL_MPHR: 1 TOTAL_SPHR: 1 TOTAL IPR: 2 TOTAL_GEADR: 1 TOTAL_GIADR: 0 TOTAL_VEADR: 0 TOTAL VIADR: 0 TOTAL MDR: 508 number of AMVs in this file COUNT DEGRADED INST MDR: 0 COUNT DEGRADED PROC MDR: 0 COUNT_DEGRADED_INST_MDR_BLOCKS: 0 COUNT_DEGRADED_PROC_MDR_BLOCKS: 0 DURATION OF PRODUCT: 180000 ms MILLISECONDS OF DATA PRESENT: 180000 ms MILLISECONDS_OF_DATA_MISSING: 0 ms SUBSETTED_PRODUCT: false SPHR: RECORD HEADER RECORD CLASS: 2 (SPHR) INSTRUMENT GROUP: 4 (AVHRR) RECORD SUBCLASS: 2 RECORD SUBCLASS VERSION: 2 RECORD SIZE: 553 RECORD_START_TIME: 2017/06/12 23:10:03.000 RECORD_STOP_TIME: 2017/06/12 23:13:03.000 AMV TOTAL NUMBER: 508 TOTAL OVERALL QUALITY: 56 % AMV NUMBER DISS: 320 OVERALL_QUALITY: 79 % FORECAST CONSISTENCY: 77 % SPATIAL VECTOR CONSISTENCY: 79 % SPATIAL_HEIGHT_CONSISTENCY: 84 % TEMPORAL_HEIGHT_CONSISTENCY: 94 % TRACKING CONSISTENCY: 94 % DISSEMINATION THRESHOLD: 50 % SAMPLING GRID RESOLUTION: 13200 m TARGET_SIZE: 13200 m SEARCH DISTANCE: 22000 m IPRS[0]: RECORD HEADER RECORD CLASS: 3 (IPR) INSTRUMENT GROUP: 0 (Generic) RECORD SUBCLASS: 0 RECORD_SUBCLASS_VERSION: 1 RECORD_SIZE: 27 RECORD_START_TIME: 2017/06/12 23:10:03.000 RECORD STOP TIME: 2017/06/12 23:13:03.000 TARGET RECORD CLASS: 4 (GEADR) TARGET_INSTRUMENT_GROUP: 4 (AVHRR) TARGET_RECORD_SUBCLASS: 20 TARGET RECORD OFFSET: 3914 TPRS[1]: RECORD HEADER RECORD CLASS: 3 (IPR) INSTRUMENT GROUP: 0 (Generic) RECORD SUBCLASS: 0 RECORD_SUBCLASS_VERSION: 1 RECORD_SIZE: 27 RECORD START TIME: 2017/06/12 23:10:03.000 RECORD STOP TIME: 2017/06/12 23:13:03.000 TARGET_RECORD_CLASS: 8 (MDR) TARGET INSTRUMENT GROUP: 4 (AVHRR)

TARGET RECORD SUBCLASS: 4 TARGET RECORD OFFSET: 4034 GEADR-20: RECORD HEADER RECORD CLASS: 4 (GEADR) INSTRUMENT GROUP: 4 (AVHRR) RECORD_SUBCLASS: 20 RECORD SUBCLASS VERSION: 1 RECORD SIZE: 120 RECORD_START_TIME: 2017/06/12 23:10:03.000 RECORD_STOP_TIME: 2017/06/12 23:13:03.000 AUX DATA POINTER: AVHR PRC xx N19 first AMV out of 642 mdr[0]: RECORD_HEADER RECORD CLASS: 8 (MDR) INSTRUMENT GROUP: 4 (AVHRR) RECORD SUBCLASS: 4 RECORD SUBCLASS VERSION: 2 RECORD_SIZE: 242 RECORD START TIME: 2017/06/12 23:10:09.000 RECORD STOP TIME: 2017/06/12 21:29:22.500 DEGRADED_INST_MDR: false DEGRADED_PROC_MDR: false AMV_VALIDITY_TIME: 2017/06/12 23:10:03.000 LATITUDE: 79.464 deg LONGITUDE: 132.6369 deg SURFACE_TYPE: 3 (undefined) CHANNEL_ID: AVHRR1 (1 bit) : 0 AVHRR2 (1 bit) : 0 AVHRR3a (1 bit) : 0 AVHRR3b (1 bit) : 0 AVHRR4 (1 bit) : 1 AVHRR5 (1 bit) : 0 WIND METHOD: 1 (Wind derived from cloud motion observed in the infrared channel) MATCHING METHOD: 2 (Cross-correlation method) AMV_DIRECTION: 167.2 deg AMV_SPEED: 17 m/s AMV PRESSURE: 98120 Pa AMV TEMPERATURE: 270.4 K ALGORITHM FLAGS: IASICOLOCATEDDATA (1 bit) : 0 INVERSIONHEIGHTASSIGNMENTCORRECTION (1 bit) : 1 CLOUDBASEASSIGNMENTCORRECTION (1 bit) : 0 IMAGEENHANCEMENTAPPLIED (1 bit) : 0 TRIPLETMODE (1 bit) : 0 AMV HA METHOD: 1 (IRW height assignment) AMV_PRESSURE_SD: 430 Pa AMV_TEMPERATURE_SD: 0.8 K QUALITY_VALUES: 95, 98, <invalid>, <invalid>, <invalid>, <invalid>, 82, 97, 100, 100, 100, 85, 100, <invalid>, FC BASETIME: 2017/06/12 12:00:00.000 FC_STEP: 6, 12 h HA METHODS: 1 (IRW height assignment), 255 (), 255 (), 255 () SENSING TIME: 20170612212922500Z, 20170612231009000Z, <invalid> FC_DIRECTION: 166.5, 166.6, <invalid> deg FC_SPEED: 13.6, 12.7, <invalid> m/s SAT_ZENITH_ANGLE: 7.62, 5.29, <invalid> m/s CLUSTER SIZE: 14, 14, <invalid> HA PRESSURE [0]: 98120, <invalid>, 98120, <invalid> Pa [1]: 99240, <invalid>, 99240, <invalid> Pa [2]: <invalid>, <invalid>, <invalid>, <invalid> Pa HA PRESSURE SD [0]: 430, <invalid>, <invalid>, <invalid> Pa [1]: 5110, <invalid>, <invalid>, <invalid> Pa [2]: <invalid>, <invalid>, <invalid>, <invalid> Pa HA TEMPERATURE [0]: 270.4, <invalid>, 272, <invalid> K [1]: 268.7, <invalid>, 271.8, <invalid> K [2]: <invalid>, <invalid>, <invalid>, <invalid> K HA_TEMPERATURE_SD

[0]: 0.8, <invalid>, <invalid>, <invalid> K [1]: 1, <invalid>, <invalid>, <invalid> K [2]: <invalid>, <invalid>, <invalid> K [2]: <invalid>, <invalid>, <invalid> K INTER_DIRECTION: 167.2, 167.9 deg INTER_SPEED: 17, 19.8 m/s MATCHING_VALUE: 2066, 5639 HA_FC_CONSISTENCY [0]: 0, <invalid>, <invalid>, <invalid> % [1]: <invalid>, <invalid>, <invalid> %

Appendix B Description of AMV BUFR message

This appendix gives an example of one particular BUFR message that can be decoded for an AMV product. Relevant parameters are highlighted in colour in the following table.

Table 16 shows an example of a BUFR message (one AMV). AMVs from all channels are contained in the same BUFR file. Only QI (excluding forecast) higher than 30 are BUFR encoded. Two QI are encoded, corresponding to the QIs with and without forecast.

The BUFR start and end of scan times refer to the time of the search and the reference image, respectively.

 Table 16: Example of BUFR message from W_XX-EUMETSAT

Darmstadt,SOUNDING+SATELLITE,NOAA19+AVHRR_C_EUMP_20170612231003_43007_eps_r_gac_l2_01 01.bin (first message). The symbol "///" in front of the field means that the field is not populated.

- 1: 223 = NOAA 19 [Satellite identifier]
- 2: 254 = (see Code Table 0'01'031) [Identification of
- originating/generating centre (see Note 10)] 3: 61 = EUMETSAT Polar System (EPS) [Satellite classification]
- 4: 13200 m [Segment size at nadir in X direction]
- 5: 13200 m [Segment size at nadir in Y direction]
- 6: 2017 Year [Year]
- 7: 6 Month [Month]
- 8: 12 Day [Day]
- 9: 23 Hour [Hour]
- 10: 10 Minute [Minute]
- 11: 3 Second [Second]
- 12: 79.464 Degree [Latitude (high accuracy)]
- 13: 132.637 Degree [Longitude (high accuracy)]
- 14: 262144 = Bit13 (see Flag Table 0'02'152) [Satellite instrument used in data processing(6)]
- 15: 1 = Wind derived from cloud motion observed in the infrared channel [Satellite derived wind computation method]
- 16: 98120 Pa [Pressure]
- 17: 167 Degree true [Wind direction]
- 18: 17 m s-1 [Wind speed]
- 19: 2.7759e+13 Hz [Satellite channel centre frequency]
- 20: 2.576e+12 Hz [Satellite channel band width]
- 21: 270.4 K [Coldest cluster temperature]
- 22: 1 = IRW height assignment [Height assignment method]
- 23: 2 = CC Cross correlation [Tracer correlation method]
- 24: /// = (CodeTable 0'08'012) [Land/sea qualifier]
- 25: 7.62 Degree [Satellite zenith angle]
- 26: 2 = Medium Range Forecast (MRF) Model [Origin of first guess information for GOES-I/M soundings]
- 27: 27 = First guess [Time significance]
- 28: 2017 Year [Year]
- 29: 6 Month [Month]
- 30: 12 Day [Day]
- 31: 12 Hour [Hour]
- 32: 25 = Nominal reporting time [Time significance]
- 33: 6 Hour [Time period or displacement]
- 34: 28 = Start of scan [Time significance]
- 35: 21 Hour [Hour]
- 36: 29 Minute [Minute]
- 37: 23 Second [Second]
- 38: 29 = End of scan [Time significance] Time
- 39: 23 Hour [Hour]

40:	10 Minute [Minute]	
41:	9 Second [Second]	
42:	167 Degree true [Wind direction]	first component
43:	17 m s-1 [Wind speed]	
44.	28 = Start of scan [Time significance]	
15.	/// Hour [Hour]	
45.	/// Niputo [Miputo]	
40:	/// Minute [Minute]	
4/:	/// Second [Second]	
48:	29 = End of scan [Time significance]	
49:	/// Hour [Hour]	
50:	/// Minute [Minute]	
51:	/// Second [Second]	
52:	168 Degree true [Wind direction]	second component
53:	19.8 m s-1 [Wind speed]	
54:	28 = Start of scan [Time significance]	
55.		
56.	/// Minute [Minute]	
50.	/// Forcend [Socond]	
571	/// Second [Second]	
58:	29 = End of scan [Time significance]	
59:	/// Hour [Hour]	
60:	/// Minute [Minute]	
61:	/// Second [Second]	
62:	<pre>/// Degree true [Wind direction]</pre>	
63:	/// m s-1 [Wind speed]	
64:	28 = Start of scan [Time significance]	
65:	/// Hour [Hour]	
66:	/// Minute [Minute]	
67·	/// Second [Second]	
68.	29 - End of scan [Time significance]	
60.	/// Hour [Hour]	
09:		
70:		
71:	/// Second [Second]	
72:	<pre>/// Degree true [Wind direction]</pre>	
73:	/// m s-1 [Wind speed]	
74:	1 = IRW height assignment [Height assignment]	gnment method]
75:	98120 Pa [Pressure]	height
76:	270.4 K [Temperature/dry-bulb temperatur	rel
77:	/// = (CodeTable 0'02'163) [Height assign	nment method]
78:	/// Pa [Pressure]	
79.	/// K [Temperature/dry-bulb temperature]	1
20·	/// = (CodoTablo 0'02'163) [Hoight assign	mont mothod]
00.	/// = (COULTABLE 0.02 105) [Height assign 0.0120 Da [Dreasure]]	height
δ1: 02:	98120 Pa [Pressure]	neight
82:	2/2 K [Temperature/dry-build temperature	ej
83:	/// = (Code l able 0'02'163) [Height assign	iment method]
84:	/// Pa [Pressure]	
85:	<pre>/// K [Temperature/dry-bulb temperature]</pre>]
86:	<pre>/// = (CodeTable 0'02'163) [Height assign</pre>	nment method]
87:	/// Pa [Pressure]	
88:	/// K [Temperature/dry-bulb temperature]	1
89:	/// = (CodeTable 0'02'163) [Height assign	ment method]
90:	/// Pa [Pressure]	
Q1.	/// K [Temperature/dry-hulb temperature]	1
۵ <u>۰</u> .	/// = (CodeTable 0'02'163) [Hoight accient	J ment method]
92. 02.	$/// P_2$ [Procession]	
93:	/// rd [riessuie]	1
94:	/// K [remperature/dry-build temperature]]
95:	/// = (Code rable 0.02'163) [Height assign	iment method]
96:		
	/// Pa [Pressure]	_
97:	<pre>/// Pa [Pressure] /// K [Temperature/dry-bulb temperature]</pre>]
97: 98:	<pre>/// Pa [Pressure] /// K [Temperature/dry-bulb temperature /// = (CodeTable 0'02'163) [Height assign</pre>] nment method]
97: 98: 99:	<pre>/// Pa [Pressure] /// K [Temperature/dry-bulb temperature /// = (CodeTable 0'02'163) [Height assigr /// Pa [Pressure]</pre>] nment method]

101.	/// = (CodeTable 0'02'163) [Height assignment method]
102:	/// Pa [Pressure]
103:	/// K [Temperature/drv-bulb temperature]
104:	103 : //////// ////+++// +/////// /////////
	//////////////////////////////////////
	present bit map]
105:	254 = (see Code Table 0'01'031) [Identification of
	originating/generating centre (see Note 10)]
106:	1 = (see Code Table 0'01'032) [Generating application]
107:	95 % [Per cent confidence] QI including forecast
108:	95 % [Per cent confidence]
109:	95 % [Per cent confidence]
110:	95 % [Per cent confidence]
111:	254 = (see Code Table 0'01'031) [Identification of
112.	originating/generating centre (see Note 10)]
112:	I = (See Code Table 0.01032) [Generating application]
114	/// = (CodeTable 0.33.035) [Manual/automatic quality control]
115.	/// = (CodeTable 0.55.055) [Indiudi/dutoIndite quality control]
116.	/// = (CodeTable 0.33035) [Manual/automatic quality control]
117·	254 = (see Code Table 0.01/031) [Identification of
11/.	originating/generating centre (see Note 10)]
118:	1 = (see Code Table 0'01'032) [Generating application]
119:	/// % [Nominal confidence threshold]
120:	/// % [Nominal confidence threshold]
121:	/// % [Nominal confidence threshold]
122:	/// % [Nominal confidence threshold]
123:	254 = (see Code Table 0'01'031) [Identification of
	originating/generating centre (see Note 10)]
124:	2 = (see Code Table 0'01'032) [Generating application]
125:	98 % [Per cent confidence] QI excluding forecast
126:	98 % [Per cent confidence]
127:	98 % [Per cent confidence]
120:	36% [Per cent connuence] 254 = (see Code Table 0'01'021) [Identification of
129.	originating/generating centre (see Note 10)]
130.	2 = (see Code Table 0.01.032) [Generating application]
131:	/// = (CodeTable 0'33'0.35) [Manual/automatic quality control]
132:	/// = (CodeTable 0'33'035) [Manual/automatic quality control]
133:	/// = (CodeTable 0'33'035) [Manual/automatic quality control]
134:	/// = (CodeTable 0'33'035) [Manual/automatic quality control]
135:	254 = (see Code Table 0'01'031) [Identification of
	originating/generating centre (see Note 10)]
136:	2 = (see Code Table 0'01'032) [Generating application]
137:	/// % [Nominal confidence threshold]
138:	/// % [Nominal confidence threshold]
139:	/// % [Nominal confidence threshold]
140:	/// % [Nominal confidence threshold]
141.	254 = (566 Coue Table 0 01 051) [1001010101]
142.	3 = (see Code Table 0.01.032) [Generating application]
143.	// % [Per cent confidence]
144:	/// % [Per cent confidence]
145:	/// % [Per cent confidence]
146:	/// % [Per cent confidence]
147:	254 = (see Code Table 0'01'031) [Identification of
	originating/generating centre (see Note 10)]
148:	3 = (see Code Table 0'01'032) [Generating application]
149:	<pre>/// = (CodeTable 0'33'035) [Manual/automatic quality control]</pre>
150:	/// = (CodeTable 0'33'035) [Manual/automatic quality control]
151:	/// = (CodeTable 0'33'035) [Manual/automatic quality control]

- /// = (CodeTable 0'33'035) [Manual/automatic quality control] 152:
- 153: 254 = (see Code Table 0'01'031) [Identification of
- originating/generating centre (see Note 10)]
- 3 = (see Code Table 0'01'032) [Generating application] 154:
- // % [Nominal confidence threshold] /// % [Nominal confidence threshold] /// % [Nominal confidence threshold] /// % [Nominal confidence threshold] 155:
- 156:
- 157:
- 158:

Appendix C Table description for individual BUFR message

Table 17: as Table 16 but showing the table reference. **Bufr table**

BUFR Field :

- 1: 0'01'007 Satellite identifier [Code Table 0'01'007] (1:1<10><0>)
- 2: 0'01'031 Identification of originating/generating centre (see Note 10) [Code Table 0'01'031] (3:1<16><0>)
- 3: 0'02'020 Satellite classification [Code Table 0'02'020] (5:7<9><0>)
- 4: 0'02'028 Segment size at nadir in X direction [m] (7:6<18><0>)
- 5: 0'02'029 Segment size at nadir in Y direction [m] (10:6<18><0>)
- 6: 0'04'001 Year [Year] (13:6<12><0>)
- 7: 0'04'002 Month [Month] (15:8<4><0>)
- 8: 0'04'003 Day [Day] (17:2<6><0>)
- 9: 0'04'004 Hour [Hour] (18:6<5><0>)
- 10: 0'04'005 Minute [Minute] (20:1<6><0>)
- 11: 0'04'006 Second [Second] (21:5<6><0>)
- 12: 0'05'001 Latitude (high accuracy) [Degree] (23:1<25><21>)
- 13: 0'06'001 Longitude (high accuracy) [Degree] (1360:4<26><24>)
- 14: 0'02'152 Satellite instrument used in data processing(6) [Flag Table 0'02'152] (2888:4<31><0>)
- 15: 0'02'023 Satellite derived wind computation method [Code Table 0'02'023] (2893:1<4><0>)
- 16: 0'07'004 Pressure [Pa] (2894:3<14><13>)
- 17: 0'11'001 Wind direction [Degree true] (3722:3<9><9>)
- 18: 0'11'002 Wind speed [m s-1] (4295:6<12><9>)
- 19: 0'02'153 Satellite channel centre frequency [Hz] (4869:4<26><0>)
- 20: 0'02'154 Satellite channel band width [Hz] (4873:4<26><0>) 21: 0'12'071 Coldest cluster temperature [K] (4877:4<12><10>)
- 22: 0'02'163 Height assignment method [Code Table 0'02'163] (5514:6<4><0>)
- 23: 0'02'164 Tracer correlation method [Code Table 0'02'164] (5515:8<3><0>)
- 24: 0'08'012 Land/sea qualifier [Code Table 0'08'012] (5517:1<2><0>)
- 25: 0'07'024 Satellite zenith angle [Degree] (5518:1<15><13>)
- 26: 0'02'057 Origin of first guess information for GOES-I/M soundings [Code Table 0'02'057] (6346:2<4><0>)
- 27: 0'08'021 Time significance [Code Table 0'08'021] (6347:4<5><0>)
- 28: 0'04'001 Year [Year] (6348:7<12><0>)
- 29: 0'04'002 Month [Month] (6351:1<4><0>)
- 30: 0'04'003 Day [Day] (6352:3<6><0>)
- 31: 0'04'004 Hour [Hour] (6353:7<5><0>)
- 32: 0'08'021 Time significance [Code Table 0'08'021] (6355:2<5><0>)
- 33: 0'04'024 Time period or displacement [Hour] (6356:5<12><0>)
- 1'10'004 Replication Operator (-)
- 34: 0'08'021 Time significance [Code Table 0'08'021] (6358:7<5><0>)
- 35: 0'04'004 Hour [Hour] (6360:2<5><0>)
- 36: 0'04'005 Minute [Minute] (6361:5<6><3>) 37: 0'04'006 Second [Second] (6553:5<6><6>)
- 38: 0'08'021 Time significance [Code Table 0'08'021] (6936:1<5><0>)
- 39: 0'04'004 Hour [Hour] (6937:4<5><0>)
- 40: 0'04'005 Minute [Minute] (6938:7<6><2>)
- 41: 0'04'006 Second [Second] (7067:3<6><6>)
- 42: 0'11'001 Wind direction [Degree true] (7449:7<9><9>)
- 43: 0'11'002 Wind speed [m s-1] (8023:2<12><9>)
- 44: 0'08'021 Time significance [Code Table 0'08'021] (8596:8<5><0>)
- 45: 0'04'004 Hour [Hour] (8598:3<5><0>)
- 46: 0'04'005 Minute [Minute] (8599:6<6><0>)
- 47: 0'04'006 Second [Second] (8601:2<6><0>)
- 48: 0'08'021 Time significance [Code Table 0'08'021] (8602:6<5><0>)
- 49: 0'04'004 Hour [Hour] (8604:1<5><0>)
- 50: 0'04'005 Minute [Minute] (8605:4<6><0>)

51: 0'04'006 Second [Second] (8606:8<6><0>) 52: 0'11'001 Wind direction [Degree true] (8608:4<9><9>) 53: 0'11'002 Wind speed [m s-1] (9181:7<12><9>) 54: 0'08'021 Time significance [Code Table 0'08'021] (9755:5<5><0>) 55: 0'04'004 Hour [Hour] (9756:8<5><0>) 56: 0'04'005 Minute [Minute] (9758:3<6><0>) 57: 0'04'006 Second [Second] (9759:7<6><0>) 58: 0'08'021 Time significance [Code Table 0'08'021] (9761:3<5><0>) 59: 0'04'004 Hour [Hour] (9762:6<5><0>) 60: 0'04'005 Minute [Minute] (9764:1<6><0>) 61: 0'04'006 Second [Second] (9765:5<6><0>) 62: 0'11'001 Wind direction [Degree true] (9767:1<9><0>) 63: 0'11'002 Wind speed [m s-1] (9768:8<12><0>) 64: 0'08'021 Time significance [Code Table 0'08'021] (9771:2<5><0>) 65: 0'04'004 Hour [Hour] (9772:5<5><0>) 66: 0'04'005 Minute [Minute] (9773:8<6><0>) 67: 0'04'006 Second [Second] (9775:4<6><0>) 68: 0'08'021 Time significance [Code Table 0'08'021] (9776:8<5><0>) 69: 0'04'004 Hour [Hour] (9778:3<5><0>) 70: 0'04'005 Minute [Minute] (9779:6<6><0>) 71: 0'04'006 Second [Second] (9781:2<6><0>) 72: 0'11'001 Wind direction [Degree true] (9782:6<9><0>) 73: 0'11'002 Wind speed [m s-1] (9784:5<12><0>) - 1'03'010 Replication Operator (-) 74: 0'02'163 Height assignment method [Code Table 0'02'163] (9786:7<4><0>) 75: 0'07'004 Pressure [Pa] (9788:1<14><13>) 76: 0'12'001 Temperature/dry-bulb temperature [K] (10616:1<12><10>) 77: 0'02'163 Height assignment method [Code Table 0'02'163] (11253:3<4><0>)78: 0'07'004 Pressure [Pa] (11254:5<14><0>) 79: 0'12'001 Temperature/dry-bulb temperature [K] (11257:1<12><0>) 80: 0'02'163 Height assignment method [Code Table 0'02'163] (11259:3<4><0>)81: 0'07'004 Pressure [Pa] (11260:5<14><13>) 82: 0'12'001 Temperature/dry-bulb temperature [K] (12088:5<12><10>) 83: 0'02'163 Height assignment method [Code Table 0'02'163] (12725:7<4><0>)84: 0'07'004 Pressure [Pa] (12727:1<14><0>) 85: 0'12'001 Temperature/dry-bulb temperature [K] (12729:5<12><0>) 86: 0'02'163 Height assignment method [Code Table 0'02'163] (12731:7<4><0>)87: 0'07'004 Pressure [Pa] (12733:1<14><0>) 88: 0'12'001 Temperature/dry-bulb temperature [K] (12735:5<12><0>) 89: 0'02'163 Height assignment method [Code Table 0'02'163] (12737:7<4><0>) 90: 0'07'004 Pressure [Pa] (12739:1<14><0>) 91: 0'12'001 Temperature/dry-bulb temperature [K] (12741:5<12><0>) 92: 0'02'163 Height assignment method [Code Table 0'02'163] (12743:7<4><0>)93: 0'07'004 Pressure [Pa] (12745:1<14><0>) 94: 0'12'001 Temperature/dry-bulb temperature [K] (12747:5<12><0>) 95: 0'02'163 Height assignment method [Code Table 0'02'163] (12749:7<4><0>)96: 0'07'004 Pressure [Pa] (12751:1<14><0>) 97: 0'12'001 Temperature/dry-bulb temperature [K] (12753:5<12><0>) 98: 0'02'163 Height assignment method [Code Table 0'02'163] (12755:7<4><0>)99: 0'07'004 Pressure [Pa] (12757:1<14><0>) 100: 0'12'001 Temperature/dry-bulb temperature [K] (12759:5<12><0>) 101: 0'02'163 Height assignment method [Code Table 0'02'163] (12761:7<4><0>)

```
AVHRR GAC AMV Product User Guide - C3S_311b T5.2 M10 D5.4
```

102: 0'07'004 Pressure [Pa] (12763:1<14><0>) 103: 0'12'001 Temperature/dry-bulb temperature [K] (12765:5<12><0>) - 2'22'000 Quality information follows (-) - 1'01'103 Replication Operator (-) 104: 0'31'031 Data present bit map (12767:7<721><0>) 105: 0'01'031 Identification of originating/generating centre (see Note 10) [Code Table 0'01'031] (12857:8<16><0>) 106: 0'01'032 Generating application [Code Table 0'01'032] (12860:6<8><0>) 1'01'004 Replication Operator (-) 107: 0'33'007 Per cent confidence [%] (12862:4<7><7>) 108: 0'33'007 Per cent confidence [%] (13308:5<7><7>) 109: 0'33'007 Per cent confidence [%] (13754:6<7><7>) 110: 0'33'007 Per cent confidence [%] (14200:7<7><7>) - 2'22'000 Quality information follows (-) 111: 0'01'031 Identification of originating/generating centre (see Note 10) [Code Table 0'01'031] (14646:8<16><0>) 112: 0'01'032 Generating application [Code Table 0'01'032] (14649:6<8><0>) - 1'01'004 Replication Operator (-) 113: 0'33'035 Manual/automatic quality control [Code Table 0'33'035] (14651:4<4><0>)114: 0'33'035 Manual/automatic quality control [Code Table 0'33'035] (14652:6<4><0>)115: 0'33'035 Manual/automatic quality control [Code Table 0'33'035] (14653:8<4><0>) 116: 0'33'035 Manual/automatic quality control [Code Table 0'33'035] (14655:2<4><0>)2'22'000 Quality information follows (-) 117: 0'01'031 Identification of originating/generating centre (see Note 10) [Code Table 0'01'031] (14656:4<16><0>) 118: 0'01'032 Generating application [Code Table 0'01'032] (14659:2<8><0>) 1'01'004 Replication Operator (-) 119: 0'33'036 Nominal confidence threshold [%] (14660:8<7><0>) 120: 0'33'036 Nominal confidence threshold [%] (14662:5<7><0>) 121: 0'33'036 Nominal confidence threshold [%] (14664:2<7><0>) 122: 0'33'036 Nominal confidence threshold [%] (14665:7<7><0>) 2'22'000 Quality information follows (-) 123: 0'01'031 Identification of originating/generating centre (see Note 10) [Code Table 0'01'031] (14667:4<16><0>) 124: 0'01'032 Generating application [Code Table 0'01'032] (14670:2<8><0>) - 1'01'004 Replication Operator (-) 125: 0'33'007 Per cent confidence [%] (14671:8<7><7>) 126: 0'33'007 Per cent confidence [%] (15118:1<7><7>) 127: 0'33'007 Per cent confidence [%] (15564:2<7><7>) 128: 0'33'007 Per cent confidence [%] (16010:3<7><7>) 2'22'000 Quality information follows (-) 129: 0'01'031 Identification of originating/generating centre (see Note 10) [Code Table 0'01'031] (16456:4<16><0>) 130: 0'01'032 Generating application [Code Table 0'01'032] (16459:2<8><0>) - 1'01'004 Replication Operator (-) 131: 0'33'035 Manual/automatic quality control [Code Table 0'33'035] (16460:8<4><0>)132: 0'33'035 Manual/automatic quality control [Code Table 0'33'035] (16462:2<4><0>)133: 0'33'035 Manual/automatic quality control [Code Table 0'33'035] (16463:4 < 4 > < 0 >)134: 0'33'035 Manual/automatic quality control [Code Table 0'33'035] (16464:6<4><0>)2'22'000 Quality information follows (-) -135: 0'01'031 Identification of originating/generating centre (see Note 10) [Code Table 0'01'031] (16465:8<16><0>) 136: 0'01'032 Generating application [Code Table 0'01'032] (16468:6<8><0>)

- 1'01'004 Replication Operator (-) 137: 0'33'036 Nominal confidence threshold [%] (16470:4<7><0>) 138: 0'33'036 Nominal confidence threshold [%] (16472:1<7><0>) 139: 0'33'036 Nominal confidence threshold [%] (16473:6<7><0>) 140: 0'33'036 Nominal confidence threshold [%] (16475:3<7><0>) - 2'22'000 Quality information follows (-) 141: 0'01'031 Identification of originating/generating centre (see Note 10) [Code Table 0'01'031] (16476:8<16><0>) 142: 0'01'032 Generating application [Code Table 0'01'032] (16479:6<8><0>) - 1'01'004 Replication Operator (-) 143: 0'33'007 Per cent confidence [%] (16481:4<7><0>) 144: 0'33'007 Per cent confidence [%] (16483:1<7><0>) 145: 0'33'007 Per cent confidence [%] (16484:6<7><0>) 146: 0'33'007 Per cent confidence [%] (16486:3<7><0>) - 2'22'000 Quality information follows (-) 147: 0'01'031 Identification of originating/generating centre (see Note 10) [Code Table 0'01'031] (16487:8<16><0>) 148: 0'01'032 Generating application [Code Table 0'01'032] (16490:6<8><0>) - 1'01'004 Replication Operator (-) 149: 0'33'035 Manual/automatic quality control [Code Table 0'33'035] (16492:4<4><0>) 150: 0'33'035 Manual/automatic quality control [Code Table 0'33'035] (16493:6<4><0>) 151: 0'33'035 Manual/automatic quality control [Code Table 0'33'035] (16494:8<4><0>)152: 0'33'035 Manual/automatic quality control [Code Table 0'33'035] (16496:2<4><0>)- 2'22'000 Quality information follows (-) 153: 0'01'031 Identification of originating/generating centre (see Note 10) [Code Table 0'01'031] (16497:4<16><0>) 154: 0'01'032 Generating application [Code Table 0'01'032] (16500:2<8><0>) - 1'01'004 Replication Operator (-) 155: 0'33'036 Nominal confidence threshold [%] (16501:8<7><0>)

156: 0'33'036 Nominal confidence threshold [%] (16503:5<7><0>)

157: 0'33'036 Nominal confidence threshold [%] (16505:2<7><0>)

158: 0'33'036 Nominal confidence threshold [%] (16506:7<7><0>)

Appendix D NetCDF

Variable	Content
cdr platform end time	20070101000000
cdr platform start time	20210101000000
channel bandwidth	10.3 - 11.3 µm
	10.8 µm
channel_id	04
comments	The input to the product are two consecutive images from AVHRR Metop-A and auxiliary ERA-Interim data.
Conventions	CF-1.7
creator_email	ops@eumetsat.int
creator_name	USC Climate Team, EUMETSAT
creation_time	20201004205927
creator_url	https://www.eumetsat.int
data_format_type	NetCDF Classic format
description	Reprocessed Atmospheric Motion Vector (AMV) time series derived from data of the AVHRR instrument on NOAA and EUMETSAT polar o rbiting satellites. AMVs provide wind speed (m/s), wind directi on (degree) and altitude in the atmosphere (hPa). This file con tains infrared window channel AMVs from AVHRR on board Metop-A.
disposition_mode	0
history	20201004205927 - netCDF generated from original data using soft ware version 1.0.
id	10.15770/EUM SEC CLM 0056

institution	EUMETSAT
instrument	AVHRR
keywords	AMV, wind, atmospheric motion vector, speed, direction, height,
licence	EUMETSAT data policy https://www.eumetsat.int/legal-framework/d ata-policy
metadata conventions	Unidata Dataset Discovery v1.0
number_of_winds	66075
orbit_eccentricity	0
orbit_end_number	38207
orbit_inclination	0
orbit_semi_major_axis	0
orbit_start_number	38206
<pre>parent_file_name</pre>	AVHR_GAC_1B_M02_20140301002203Z_20140301233703Z_R_0_20200929151 225Z
platform	M02
platform_long_name	Metop-A
processing_centre	TCE1
processing_level	2
processing_mode	R
processing_algorithm_version	3.1
producer_agency	EUMETSAT
product_type	AMV
product_version	Release 2.0
references	10.15770/EUM_SEC_CLM_0056
reference_url	http://doi.org/10.15770/EUM SEC CLM 0056
<pre>sensing_start_time</pre>	20140301002203
sensing_stop_time	20140301233703
sensor_model	305
source	Observational satellite observation: Metop-A AVHRR; Model: ERA- Interim as input
summary	This is the release 2 of the Metop-A AVHRR atmospheric motion v ectors and their associated quality parameters. This data recor d was processed using the near real-time EUMETSAT algorithm v2. 2. Each file contains one full Metop orbit (Svalbard to Svalbar d) or one day of data.
title	Polar atmospheric motion vectors from Metop-A AVHRR
title short name	Metop-A polar AVHRR AMVs

Number	Name	Standard name	Long name	Description	Unit	Valid minim um	Valid Ma ximum	Туре
1	algorithm_fl ags	status_flag	Algorithm flags	Algorithm flags. 7: IASI co-located data used for height assignment 6: Inversion height assignmen t correction applied 5: Cloud base assignment corr ection applied 4: Image enhancement applied 3: Triplet mode 2: [Reserved] 1: [Reserved] 0: [Missing value] All bits: [Missing value]	1	0b	8b	byte
2	cluster_size		number of cloud pixels in cluste r	number of cloud pixels in clu ster	count	0	32767	Unsinged short i nteger
3	degraded_ins t_mdr	status_flag	instrument degra dation	Quality of MDR has been degra ded due to an instrument degr adation	1	0	1	byte
4	degraded_pro c_MDR	status_flag	processing degra dation	Quality of MDR has been degra ded due to an processing degr adation	1	0	1	byte
5	eastward_win d	eastward_wind	u component of t he final wind sp eed	This is the u, or zonal, comp onent of the final AMV speed	m/s	-200	200	float
6	forecast_ref erence_time	forecast_refere nce_time	Base/reference t ime of the forec ast	The forecast reference time i n NWP is the "data time", the time of the analysis from wh ich the forecast was made. It is not the time for which th e forecast is valid.	S	19000000000 000	2100000 000000	Unsigned integer 64 bit
7	forecast dir ection	wind from direc tion	Wind direction o f the forecast	Wind direction of the forecas t used for the first guess	degree	0	360	float
8	height_assig nment_method	status_flag	Individual heigh t assignment met hods	<pre>Individual height assignment methods. 0: Auto editor; 1: IRW height assignment; 2: WV height assignment; 3: H2O intercept height assig nment; 4: CO2 slicing height assignm ent; 5: Low pixel max gradient; 6: Higher pixel max gradient; 7: Primary height assignment; 8: Layer thickness assignment; ;</pre>	1	д0	15b	byte

Coherun	cus climate ci	lange Service						
				9: Cumulative contribution fu				
				nction -10 percent height;				
				10: Cumulative contribution f				
				unction -50 percent height:				
				11. Cumulative contribution f				
				unction -90 percent height;				
				12: Cumulative contribution f				
				unction - height of maximum g				
				radient;				
				13: TR / two WV channel ratio				
				ning method:				
				14: Composito boight assignme				
				14. Composite nergit assignme				
				nt;				
				15/255; [missing value]				
9	height_assig	air_pressure	Individual heigh	Individual height assignment	Pa	0	120000	float
	nment_pressu		t assignment pre	pressure				
	re		ssure					
10	height assig	air pressure st	Individual heigh	Individual height assignment	Pa	0	120000	float
	nment pressu	andard error	t assignment pre	pressure standard deviation				
	ro atondard	andura_crror	aguro standard d	Pressure scandard deviación				
	stanuard		ssure scandard d					
	deviation		eviation					
11	height assig	air_temperature	Individual heigh	Individual height assignment	K	0	400	float
	nment_temper		t assignment tem	temperature				
	ature		perature					
12	height assig	air temperature	Individual heigh	Individual height assignment	K	0	100	float
	nment temper	standard error	t assignment tem	temperature standard deviatio				
	aturo standa	beamaara_error	poraturo standar	n				
	ature_stanua		peracure scandar	11				
10	ra deviation		d deviation					67
13	latitude	latitude	latitude north p	Latitude of the vector	degrees_north	-90	90	iloat
			ositive					
14	longitude	longitude	longitude west n	Longitude of the vector	degrees_east	-180	180	float
			egative					
15	matching met	status flag	Matching method	Matching method.	1	0b	8b	byte
	hod		_	0: Norms least square minimum				_
				• 1				
				· Euclidean norm with radiana				
				· Ederidean norm with fadiant				
				e correlation;				
				2: Cross-correlation method;				
				3-6: [Reserved];				
				7/255: [Missing value]				
16	matching val		Matching value	Peak value of correlation met	1	0	255	Unsigned
	ue			hod				short i
								nteger
17	northward wi	northward wind	v component of t	This is the v. or meridional	m/s	-200	200	float
1,	norchwaru wi	nor chiwaru_wind	be final wind an	component of the final NW	/ S	200	200	TTOAL
	IIU		ne iinai wina sp	component of the linal AMV S				
10	2.16		eed	peed				
18	platform_zen	platform_zenith	Platform/satelli	Platform/Satellite zenith ang	degrees	0	90	float
	ith_angle	_angle	te zenith angle	le				
19	quality inde	aggregate quali	Overall quality	Overall wind quality index/fl	percent	0	100	float
	X	ty flag	index	ag of the vector including fo				
				recast. First entry in qualit				
				v flag values				
				y IIay Values.				

20	quality_inde	quality_flag	Overall wind vec	Overall quality index/flag of	percent	0	100	float
	x_excluding_		tor quality inde	the vector excluding forecas				
	forecast		x excluding fore	t. Second entry in quality_fl				
			са	ag value		-		
21	quality inde x_values	quality_flag	All wind vector quality indices	<pre>All quality indices/flags of the vector. 1: Overall quality; 2: Overall quality excl. fore cast; 3: Estimated error; 4 - 6: [reserved]; 7: Forecast consistency; 8: Spatial vector consistency; 9: Spatial height consistency; 10: Temporal height consisten cy; 11: Tracking vector consisten cy; 12: Tracking speed consisten cy; 13: Tracking direction consis tency; 14: U-component consistency; 15: V-component consistency; 16 - 18: [Reserved]</pre>	percent	0	100	float
22	sensing_time	time	Sensing tim	Time of AMV measurement	S	N/A	N/A	Unsinged integer 64 bit
23	surface_type		Surface/Area typ e	The Surface type contains a c ode indicating the type of su rface underneath the tracer. 0: Land; 1: Sea; 2: Coastal; 3: [Missing value]	1	0	3	Unsigned short i nteger
24	wind_brightn ess_temperat ure	brightness_temp erature	AMV brightness t emperature	Brightness temperature of the pixels used for tracking.	K	0	1200	float
25	wind_brightn ess_temperat ure_standard deviation	brightness_temp erature standar d_error	AMV temperature standard deviati on	Standard deviation of the bri ghtness temperature of the pi xels used for tracking.	К	0	1200	float
26	wind_from_di rection	wind_from_direc tion	AMV direction	Final AMV direction.	degrees	0	360	float
27	wind directi on_component	wind from direc tion	Directions of th e intermediate w ind components	Directions of the intermediat e wind components	degrees	0	360	float
28	wind_pressur e	air_pressure	AMV pressure	Final AMV pressure, i.e. heig ht of the AMV in the atmosphe re.	Pa	0	120000	float

29	wind pressur	air pressure st	AMV pressure sta	AMV pressure standard deviati	Pa	0	120000	Float
	e standard d	andard error	ndard deviation	on				
	eviation	—						
30	wind_method	status_flag	wind method used	Method used for AMV derivatio	1	0	15	byte
			for AMV derivat	n.				
			ion	0: [Reserved];				
				1: Wind derived from cloud mo				
				tion observed in the infrared				
				channel;				
				2: Wind derived from cloud mo				
				tion observed in the visible				
				channel;				
				3: Wind derived from cloud mo				
				tion observed in the water va				
				pour channel;				
				4: Wind derived from motion o				
				bserved in a combi				
				nation of spectral channels;				
				5: Wind derived from motion o				
				bserved in the water vapour c				
				find derived from motion of				
				b: Will derived from motion o				
				7. Wind derived from motion of				
				hearwad in the water wareau a				
				bappel (cloud or clear air po				
				t specified).				
				8 = 12. [Reserved].				
				13: Root mean square:				
				14: [Reserved]:				
				15/255: [Missing value]				
31	wind speed	wind speed	AMV speed	This is the final AMV speed.	m/s	0	500	float
32	wind speed c	wind speed	Speed of the int	Speed of the intermediate win	m/s	0	360	float
	omponent		ermediate wind c	d components				
			omponents					

ECMWF Shinfield Park Reading RG2 9AX UK

climate.copernicus.eu

copernicus.eu

ecmwf.int